1
1

Искусственный интеллект – венец цифровой трансформации АПК

К автоматической аналитике и формированию рекомендаций на основе искусственного интеллекта (ИИ) — заключительным фазам цифровизации агробизнеса — прибегает в России не более 2-3% предприятий. При этом суть цифровизации и основной ее экономический эффект заключается именно в этих двух этапах. Однако, по мнению Ильи Воронкова, генерального директора компании «Геомир», уже в ближайшие 7-10 лет рост объемов использования ИИ и компьютерного моделирования в АПК произойдёт в геометрической прогрессии.

Упростить сбор данных и наладить их централизованное хранение помогают FMS-системы (системы управления агропроизводством). Это базовый уровень цифровой трансформации, без которого невозможно внедрение более продвинутых технологий. Экономический эффект от использования FMS-систем скорее косвенный, и его размер будет для каждого хозяйства свой, но в среднем составит от 100 руб./га.

В свою очередь рекомендательные сервисы — ИИ и компьютерное моделирование использования ресурсов — относится уже к следующим этапам цифровой трансформации. От них предприятия получают прямой экономический эффект в среднем от 500 руб./га уже в первый год использования. Это происходит за счет принятия более эффективных агрономических и управленческих решений, снижения расхода ТМЦ и случаев хищений, оптимизации трудозатрат персонала и пр.

«Развитие рекомендательных сервисов на основе ИИ, помогающих принимать решения за человека, — это глобальный межотраслевой тренд. И мы видим, что именно в этом направлении будет меняться российский АПК, и уже к 2030 году цифровизация отрасли приведет к автоматизации всех производственных процессов и максимальному внедрению ИИ», — поделился Илья Воронков.

На основе собственной статистики компании, внедряющей автоматизированную систему управления агропредприятием и ассортимент рекомендательных сервисов, среди наиболее актуальных задач, решать которые можно сегодня при помощи ИИ:

  • выбор оптимальных культур и соответствующих технологий,
  • рекомендации по срокам сева и проведению других агротехнических мероприятий,
  • распознание сорняков и формирование баковых смесей,
  • прогноз наступления и определение болезней с рекомендациями по фунгицидным обработкам,
  • распознание вредителей в фитоловушках с рекомендациями по инсектицидным обработкам,
  • определение сроков и последовательности уборки полей,
  • факторный анализ урожайности.

«Эффективность этих решений в сравнении с „ручным“ способом заключается в комплексном анализе большего объема информации за меньшее время с гарантией исключения возможных человеческих ошибок. Именно трансформация процесса принятия решений в сторону ИИ и компьютерного моделирования — это то, за счет чего может произойти новый кратный рост объемов и рентабельности сельхозпроизводства у нас в стране», — подытожил эксперт.

Промышленность
 
Избранное Промышленность
 
Ритейл
 
Избранное Ритейл
 
Автомобили и запчасти
 
Избранное Автомобили и запчасти
 
Интернет-торговля и фулфилмент
 
Избранное Интернет-торговля и фулфилмент
 
Продукты питания и фреш
 
Избранное Продукты питания и фреш
 
ПОДПИСКА НА НОВОСТНУЮ РАССЫЛКУ
 
Дополнительная информация
 

 

О сервисе "Умная Логистика"

 

 

 

 

 

 

 

Новостная рассылка

Подпишитесь на нашу рассылку, чтобы получать свежие новости на вашу почту!

 
Новости