Группа «М.Видео-Эльдорадо», крупнейшая российская розничная сеть электроники и бытовой техники (ММВБ: MVID), входящая в ПФГ САФМАР Михаила Гуцериева, объявляет о создании центра компетенций в области аналитики данных и машинного обучения – Digital Retail Data Science Centre. Подразделение сконцентрируется на разработке и внедрении математических алгоритмов в бизнес процессы ритейлера – маркетинг, онлайн-продажи, логистику и управление персоналом. Компания рассчитывает, что технологии, основанные на анализе данных, позволят сократить операционные расходы и смогут принести до пяти млрд рублей дополнительного оборота в среднесрочной перспективе.
«М.Видео – Эльдорадо» создаёт Digital Retail Data Science Centre с целью поиска дополнительных точек роста бизнеса, основанных на анализе данных, и перехода на автоматизированные «умные» сервисы и бизнес-процессы. Группа управляет популярными онлайн-магазинами 840 гипермаркетами бытовой техники и электроники, общее ежегодное число клиентских контактов в которых превышает один миллиард.
«Сегодня ритейл является высокотехнологичной индустрией, в которой высокая скорость изменений и внедрение инноваций являются конкурентным преимуществом. В связи с этим, развитие технологий аналитики данных и машинного обучения имеет для нас стратегическое значение. В соответствии с лучшими мировыми практиками клиенты «М.Видео» смогут получить действительно персонализированное комплексное предложение в рознице и онлайн с учётом их предыдущего взаимодействия с компанией. Автоматизированные сервисы на основе аналитики данных также сокращают операционные расходы и позитивно влияют на продажи за счёт возврата ушедших с сайта клиентов, роста уровня конверсии и увеличения среднего чека. Так, по итогам 2018 года технологии Data Science могут принести «М.Видео» до 800 миллионов дополнительного онлайн оборота, а в пятилетней перспективе – до пяти миллиардов рублей», - прокомментировал директор по стратегическому маркетингу группы «М.Видео – Эльдорадо» Александр Ерофеев.
В первую очередь, Data Science центр сосредоточится на задачах целевого маркетинга и оптимизации клиентского опыта на сайте. Некоторые разработки в этом направлении уже сейчас позволяют оказывать персонализированный сервис каждому клиенту, исходя из его предпочтений и потребностей. «М.Видео-Эльдорадо» анализирует поведение покупателей как онлайн, так и оффлайн, например, историю покупок, использование бонусных баллов и других скидочных средств, поведение на сайте и в магазине, просмотры, брошенные корзины, отклики на маркетинговые коммуникации, SMS и email рассылки.
Группа «М.Видео-Эльдорадо» также изучает, пилотирует и внедряет различные решения, основанные на аналитике данных и машинном обучении, и во внутренних процессах, в том числе в сфере логистики и управления персоналом. Так, ритейлер осуществляет прогнозирование ежедневной потребности в персонале в рознице, а также спроса для управления логистическими поставками. При планировании рабочих графиков персонала и транспортировок товаров в каждый из магазинов учитывается географическое расположение магазина, трафик, сезонность, а также скорость розничных продаж и потенциальные объёмы самовывоза онлайн-заказов
«Направление Data Science развивается в «М.Видео» уже около полутра лет – за это время мы научились внедрять алгоритмы машинного обучения и увидели их эффективность для бизнеса. Открытие центра компетенций в области аналитики данных предполагает как расширение спектра проектов, так и команды. При этом, область применения технологии не ограничивается клиентской аналитикой. В будущем мы также планируем проекты по повышению эффективности интернет-мерчандайзинга и дальнейшей оптимизации клиентского пути на сайте, а также управлению промо акциями, товарным ассортиментом, стоком и розничным персоналом», – отметил руководитель Digital Retail Data Science Centre Владимир Литвинюк.
Как пример, аналитика данных и алгоритмы машинного обучения в «М.Видео» позволяют идентифицировать клиентов, склонных к совершению покупки, определить наиболее эффективный способ привести их на сайт или в магазин, понять, какие товары нужны покупателям, и сделать лучшее предложение. В частности, клиент получает информацию о тех промоакциях (беспроцентный кредит, кэшбэк, распродажа или скидочный промокод), которые скорее всего будут интересны именно ему. По результатам пилотных рассылок, эффективность контакта выросла на 60%. Если товара нет в наличии или доставка занимает значительное время, сайт выдаёт альтернативные товары с лучшим временем доставки. Клиент также получает рекомендации о наиболее подходящих сопутствующих товарах и аксессуарах – A/Bтестирование показало увеличение количества заказов с аксессуарами на 12% и рост оборота аксессуаров на 15%. Если пользователь покинул сайт без покупки, система продолжает взаимодействие с помощью персонализированных Email-сообщений: предлагает подборку альтернативных товаров, отправляет уведомление о снижении цены на просмотренные товары или о том, что ранее недоступный товар вернулся в сток.